The Multimodal Transistor – MMT –

A paradigm shift in TFT design: simple, fast, robust implementations with reduced footprint and cost for (IoT) mass markets

> Eva Bestelink Dr Radu Sporea

Advanced Technology Institute

University of Surrey Guildford, UK

r.a.sporea@surrey.ac.uk teamsporea.info surrey.ac.uk/ati

Structure and fabrication

- Technology-independent implementation
- Staggered-electrode configuration
- Bottom or top gate architecture
- Energy barrier deliberately engineered into the source contact
- Multiple-gate design for versatile mixed-signal operation in large area electronics beyond display

Robust operation

Tolerance to geometrical registration and material property degradation over a wide range for facile implementation with low-cost technologies, alongside conventional TFTs.

Drain voltage (V)

Project Status

- Transistor demonstration in microcrystalline silicon (bottom gate configuration)
- TCAD devices and circuits
- Organic and oxide device fabrication ongoing (top gate configuration)
- Research funding application pending decision

Publications

PCT/GB2019/053383 Display Week 2020: 31.1, P.18 Journal paper submitted

Contact

Technology transfer Dr William Mortimore techtransfer@surrey.ac.uk

Research and collaboration Dr Radu Sporea r.a.sporea@surrey.ac.uk

Features and benefits

SENSOR

SENSOR

A new TFT design paradigm, scalable with material and process optimisations

Input-output linearity

Output current can be designed to vary linearly with input voltage in saturation.

The constant transconductance enables low-distortion analog operations e.g. amplification, simplifying circuit design

Compact, robust linear circuits with high gain pave the way for low-cost neuromorphic circuits in thin-film technologies

High-speed operation

%

Contact-controlled transistors usually have low cut-off frequencies. MMTs pre-charge source capacitance, redefining the possibilities in fast, efficient and high noise margin circuits

Time

CG1_A CG1 Insulator S

Analog and digital control

Multilevel logic digital-to-analog conversion and multiplication in a compact layout minimises error due to device linearity.

Floating gate designs

analog and mixed-signal blocks for highly functional circuits at reduced footprint. energy and cost

Compact lavout

for multiple

Robust, materialindependent design rules for facile integration with existing processes

Independent control of charge injection and transport

CG1 controls magnitude of the current CG2 controls the on/off device conductivity Current is independent of drain voltage

